Деньги, как известно, имеют различные функции. Одной из них является непрестанное движение денег в обращении, обслуживание процесса обращения. Без выполнения деньгами этой функции торговля была бы невозможна.

Антенны для Wi-Fi-устройств

Опубликовано: 14.11.2018

видео Антенны для Wi-Fi-устройств

НАПРАВЛЕННАЯ WI-FI АНТЕНА

Характеристики антенн

Одной из важнейших характеристик антенн является коэффициент усиления. Часто название этого параметра приводит к ошибочному предположению, что антенны способны усиливать сигнал. На самом деле это не так — если мощность передатчика, к примеру, составляет 50 мВт, то какую бы антенну мы ни поставили, мощность передаваемого сигнала будет такой же. Дело в том, что все антенны подобного рода представляют собой пассивные устройства и брать энергию для усиления передаваемого сигнала им попросту неоткуда. Но что же тогда означает коэффициент усиления? Для того чтобы ответить на этот вопрос, прежде ознакомимся с такими важными понятиями, как идеальный изотропный излучатель и диаграмма направленности антенны.



Изотропный излучатель

Антенны излучают энергию в виде электромагнитных волн во всех направлениях. Однако эффективность передачи сигнала для различных направлений может быть неодинакова и характеризуется диаграммой направленности.

Для оценки эффективности передачи сигнала по различным направлениям введено понятие изотропного излучателя, или изотропной антенны.


✅Как сделать СверхДальний Wi-Fi

Изотропный излучатель — это идеальный точечный источник электромагнитных волн, излучающий равномерно по всем направлениям. Если мысленно представить себе сферу с центром, совпадающим с изотропным излучателем, то плотность излучаемой изотропным источником энергии будет одинакова в любой точке такой сферы. Поэтому говорят, что изотропный излучатель образует равномерное по плотности энергии поле сферической формы. В природе изотропных излучателей не существует. Каждая передающая антенна, даже самая простая, излучает энергию неравномерно — в каком-то направлении ее излучение максимально. Изотропный же излучатель рассматривается исключительно в качестве некоторого эталонного излучателя, с которым удобно сравнивать все остальные антенны.


Мощная Wi-Fi антенна своими руками.

Диаграмма направленности антенны

Направленные свойства антенн принято определять зависимостью напряженности излучаемого антенной поля от направления. Графическое представление этой зависимости называется диаграммой направленности антенны. Трехмерная диаграмма направленности изображается как поверхность, описываемая исходящим из начала координат радиус-вектором, длина которого в том или ином направлении пропорциональна энергии, излучаемой антенной в данном направлении. Кроме трехмерных диаграмм, часто рассматривают и двумерные, которые строятся для горизонтальной и вертикальной плоскостей.

При этом диаграмма направленности имеет вид замкнутой линии в полярной системе координат, построенной таким образом, чтобы расстояние от антенны (центр диаграммы) до любой точки диаграммы направленности было прямо пропорционально энергии, излучаемой антенной в данном направлении.

Для изотропной антенны, излучающей энергию одинаково по всем направлениям, диаграмма направленности представляет собой сферу, центр которой совпадает с положением изотропного излучателя, а горизонтальная и вертикальная диаграммы направленности изотропного излучателя имеют форму окружности.

Для направленных антенн на диаграмме направленности можно выделить так называемые лепестки, то есть направления преимущественного излучения. Направление максимального излучения антенн называется главным направлением; соответствующий ему лепесток — главным; остальные лепестки — боковыми, а лепесток излучения в сторону, обратную главному направлению, называется задним лепестком диаграммы направленности антенны. Направления, в которых антенна не принимает и не излучает, называются нулями диаграммы направленности.

Диаграмму направленности также принято характеризовать шириной, под которой понимают угол, внутри которого коэффициент усиления уменьшается по отношению к максимальному не более чем на 3 дБ. Практически всегда коэффициент усиления и ширина диаграммы взаимосвязаны: чем больше усиление, тем уже диаграмма, и наоборот.

Коэффициент усиления антенны

Итак, после того как мы получили представление о таких важных понятиях, как идеальный изотропный точечный излучатель и диаграмма направленности антенны, можно сформулировать понятие коэффициента усиления антенны.

Коэффициент усиления антенны определяет, насколько децибел плотность потока энергии, излучаемого антенной в определенном направлении, больше плотности потока энергии, который был бы зафиксирован в случае использования изотропной антенны. Коэффициент усиления антенны измеряется в так называемых изотропных децибелах (дБи или dBi).

Напомним, что в физике мощность принято измерять в ваттах (Вт). Однако в теории связи для измерения мощности сигнала чаще используют децибелы (дБ). Данная единица измерения является логарифмической и может использоваться лишь для сравнения одноименных физических величин. К примеру, если сравниваются два значения A и B одной и той же физической величины, то отношение A/B показывает, во сколько раз одна величина больше другой. Если же рассмотреть десятичный логарифм того же самого отношения, то мы получим сравнение этих величин, выраженное в белах (Б), а выражение 10lg(A/B) определяет сравнение этих величин в децибелах (дБ). Например, если говорят, что одна величина больше другой на 20 дБ, то это означает, что она больше другой в 100 раз.

Децибелы используются не только для сравнения величин, но и для выражения абсолютных значений. Для этого в качестве величины, с которой производится сравнение, принимается некоторое эталонное значение. Например, чтобы выразить абсолютное значение мощности сигнала в децибелах, за эталон принимается мощность в 1 мВт и уровень мощности сравнивается в децибелах с мощностью в 1 мВт. Данная единица измерения получила название децибел на милливатт (дБм) и показывает, на сколько децибел мощность измеряемого сигнала больше мощности в 1 мВт.

Нетрудно рассчитать, что мощности 100 мВт соответствует мощность 20 дБм, а мощности 50 мВт — мощность 17 дБм.

Так, если коэффициент усиления антенны в заданном направлении составляет 5 dBi, то это означает, что в этом направлении мощность излучения на 5 дБ (в 3,16 раза) больше, чем мощность излучения идеальной изотропной антенны. Естественно, увеличение мощности сигнала в одном направлении влечет за собой уменьшение мощности в других направлениях.

Конечно, когда говорят, что коэффициент усиления антенны составляет 10 dBi, то имеется в виду направление, в котором достигается максимальная мощность излучения (главный лепесток диаграммы направленности).

Зная коэффициент усиления антенны и мощность передатчика, нетрудно рассчитать мощность сигнала в направлении главного лепестка диаграммы направленности. Так, при использовании беспроводной точкой доступа с мощностью передатчика 20 dBm (100 мВт) и направленной антенны с коэффициентом усиления 10 dBi мощность сигнала в направлении максимального усиления составит 20 dBm + 10 dBi = 30 dBm (1000 мВт), то есть в 10 раз больше, чем в случае применения изотропной антенны.

rss